Part of VISHKAR MCP Ecosystem← Back to Ecosystem Hub

Enhanced Context MCP

AI Intelligence Layer - SDLC Guidance, VISHKAR Agents & Context-Aware Development

17-Step SDLC38 VISHKAR Agents10 Toolsv2.0.0

Role in the Ecosystem

Enhanced Context MCP is the AI Intelligence Layer of the VISHKAR ecosystem. It provides development methodology guidance, specialized agent profiles, and context-aware tooling for autonomous software development.

  • 17-Step Enhanced SDLC with 4-Angle Internal Review
  • 38 specialized VISHKAR agents (32 technical + 6 domain)
  • Contextual agent selection by file patterns
  • POC building methodology (QIP framework)
  • Intent-based context loading

Quick Example

# Get SDLC guidance
curl -X POST \
  https://enhanced-context-mcp.vercel.app/api/mcp \
  -H "Content-Type: application/json" \
  -H "X-API-Key: pk_your_key" \
  -d '{
    "jsonrpc": "2.0",
    "method": "tools/call",
    "params": {
      "name": "get_sdlc_guidance",
      "arguments": {"section": "overview"}
    },
    "id": 1
  }'

Ecosystem Architecture

┌─────────────────────────────────────────────────────────────────┐
│                     VISHKAR AI Agent                             │
└──────────────────────────────┬──────────────────────────────────┘
                               │
            ┌──────────────────┴──────────────────┐
            ▼                                      ▼
┌───────────────────────┐              ┌───────────────────────┐
│   PROJECT REGISTRY    │◄────────────►│  ENHANCED CONTEXT MCP │ ◄── YOU ARE HERE
│   (Entry Point)       │              │   (AI Intelligence)   │
└───────────────────────┘              └───────────┬───────────┘
                                                   │
              ┌────────────────────────────────────┼────────────────┐
              ▼                                    ▼                ▼
┌───────────────────────┐    ┌───────────────────────┐    ┌───────────────────┐
│      JIRA MCP         │    │   CONFLUENCE MCP      │    │  STORYCRAFTER MCP │
│   (41 Tools)          │    │    (32 Tools)         │    │   (4 Tools)       │
└───────────────────────┘    └───────────────────────┘    └───────────────────┘

Enhanced Context MCP Provides:
• 17-Step SDLC Guidance → Development methodology for all MCPs
• 38 VISHKAR Agents    → Specialized reviewers (architecture, security, etc.)
• Contextual Selection → "Give me the right architect" for any file
• POC Methodology      → QIP framework for proof-of-concept sites

Key Capabilities

17-Step Enhanced SDLC

Autonomous development lifecycle with 7 phases including 4-Angle Internal Review.

Phases:
  1. 1. Task Selection
  2. 2. Implementation
  3. 3-6. 4-Angle Internal Review (Arch, Security, Quality, Tech-Stack)
  4. 7. Feedback Integration
  5. 8-11. Testing (Unit, Integration, E2E, Security)
  6. 12-14. PR & Review
  7. 15-17. Merge & Deploy

38 VISHKAR Agents

Specialized AI agents for every development discipline.

Agent Categories:
• Architecture Review
• Security Audit
• Frontend Dev
• Backend Engineer
• TypeScript Pro
• FastAPI Expert
• Terraform Specialist
• Test Automator
• E-Commerce Planning
• Healthcare Domain
• FinTech Compliance
• + 27 more...

Contextual Agent Selection

"Give me the right architect" - automatic agent matching based on file patterns.

get_contextual_agent({
  file_paths: [
    "backend/src/api.py",
    "frontend/Button.tsx",
    "terraform/main.tf"
  ]
})

→ Returns: fastapi-pro, frontend-dev,
           terraform-specialist

POC Building Guide

QIP methodology for interactive proof-of-concept sites.

6-Section Framework:
  1. 1. Questions (Clarifying Questions)
  2. 2. Architecture (System Design)
  3. 3. Delivery (Timeline & WBS)
  4. 4. Risks (Risk Analysis)
  5. 5. North Star (Vision & Goals)
  6. 6. Demo (Interactive Prototype)

Available Tools

ToolDescription
get_startedOnboarding and ecosystem overview
get_sdlc_guidance17-Step SDLC with agent mappings and quality gates
get_contextual_agentMatch files to specialist agents automatically
load_enhanced_contextIntent-based context loading with smart selection
list_vishkar_agentsList all 38 VISHKAR agents with filtering
load_vishkar_agentLoad complete agent profile with examples
get_poc_building_guideQIP methodology for POC sites
validate_vishkar_agent_profileValidate agent profile format
refresh_agent_cacheClear and reload agent profiles
update_agentUpdate agent configurations with learning

Usage Examples

Get 17-Step SDLC Overview

POST /api/mcp
X-API-Key: pk_your_key

{
  "jsonrpc": "2.0",
  "method": "tools/call",
  "params": {
    "name": "get_sdlc_guidance",
    "arguments": { "section": "overview" }
  },
  "id": 1
}

List VISHKAR Agents by Type

POST /api/mcp
{
  "jsonrpc": "2.0",
  "method": "tools/call",
  "params": {
    "name": "list_vishkar_agents",
    "arguments": { "agent_type": "domain_expert" }
  },
  "id": 1
}

Get Right Architect for Files

POST /api/mcp
{
  "jsonrpc": "2.0",
  "method": "tools/call",
  "params": {
    "name": "get_contextual_agent",
    "arguments": {
      "file_paths": ["backend/api/routes.py", "frontend/src/App.tsx"]
    }
  },
  "id": 1
}

Related MCP Services